Twisted Burnside–Frobenius Theory for Endomorphisms of Polycyclic Groups

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twisted K–Theory of Lie Groups

I determine the twisted K–theory of all compact simply connected simple Lie groups. The computation reduces via the Freed–Hopkins–Teleman theorem [?] to the CFT prescription, and thus explains why it gives the correct result. Finally I analyze the exceptions noted by Bouwknegt et al [?].

متن کامل

Twisted Equivariant K-theory for Proper actions of Discrete Groups

We will make a construction of twisted equivairant K-theory for proper actions of discrete groups by using ideas of Lück and Oliver [16] to expand a construction of Adem and Ruan [1].

متن کامل

Endomorphisms of Relatively Hyperbolic Groups

We generalize some results of Paulin and Rips-Sela on endomorphisms of hyperbolic groups to relatively hyperbolic groups, and in particular prove the following. • If G is a non-elementary relatively hyperbolic group with slender parabolic subgroups, and either G is not co-Hopfian or Out(G) is infinite, then G splits over a slender group. • If H is a non-parabolic subgroup of a relatively hyperb...

متن کامل

Galois Theory of Iterated Endomorphisms

Given an abelian algebraic group A over a global field F , α ∈ A(F ), and a prime `, the set of all preimages of α under some iterate of [`] generates an extension of F that contains all `-power torsion points as well as a Kummer-type extension. We analyze the Galois group of this extension, and for several classes of A we give a simple characterization of when the Galois group is as large as p...

متن کامل

Mapping Tori of Endomorphisms of Free Groups

For a large class of endomorphisms of finitely generated free groups we prove that their mapping tori groups are word-hyperbolic if and only if they don’t contain Baumslag-Solitar subgroups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Russian Journal of Mathematical Physics

سال: 2018

ISSN: 1061-9208,1555-6638

DOI: 10.1134/s1061920818010028